2025-06-11 2251 0
https://doi.org/10.1680/jgeot.23.00451 摘要 為浮式風(fēng)電場提供更可靠的共享錨,研究提出了一種融合了重力錨和吸力錨優(yōu)勢的新型沉箱-板組合重力錨(CGA)。研究通過開展離心模型試驗探究該新型錨在砂土地基中的承載性能。該新型錨采用半模型制作,以便通過粒子圖像測速分析錨的運動及土體位移。并基于高級亞塑性本構(gòu)開展了數(shù)值模擬,以揭示錨承載發(fā)揮機制。研究發(fā)現(xiàn)CGA相比常規(guī)沉箱或板錨具有更高的承載力。在沉箱上添加板并增重后,錨的破壞模式可能從正向旋轉(zhuǎn)向平動轉(zhuǎn)換。同時,這種調(diào)整可使脆性失效轉(zhuǎn)變?yōu)楦煽康难有云茐摹M馏w發(fā)揮區(qū)域的擴大和沉箱前方土體應(yīng)力水平的提高使CGA承載力提高的主要原因。研究所提的CGA為漂浮式風(fēng)電場的共享錨提供了一種有前景的解決方案。 離心模型試驗 離心模型試驗在 ZJU400 梁式離心機上以 100g 的加速度進行(Chen 等,2010),該離心機的容量為 400g·t,有效臂半徑為 4.5m。 01 試驗方案 使用不同的半模型錨進行了五次離心模型試驗,錨具體尺寸見圖1。試驗編號中d和h分別表示原型沉箱的直徑和深度,D表示板的直徑,后續(xù)數(shù)值為豎向壓力大小。例如,“D12d4h4-30kPa”表示原型尺寸中錨的沉箱部分直徑d和埋深h均為4 m,錨的板部分直徑為12 m,作用在海床上的垂直壓力為30 kPa。前三組模型試驗旨在探究板尺寸和豎向壓力的影響,后兩組試驗旨在與第三組試驗對比探究沉箱部分深度及板直徑的影響。 圖 1 離心模型試驗中所用錨(單位:mm) 02 模型錨 模型錨均由鋁合金制作,密度為2.8 g/cm3,彈性模量為72 GPa,泊松比為0.3。這些錨的沉箱部分直徑均為40 mm,壁厚1.5 mm。圖1(b)為試驗2所用D12d4h4模型,該模型板部分直徑為120 mm, 板厚為1.5 mm。圖1(c)為試驗3所用D12d4h4-30kPa模型,該模型板部分直徑仍為120 mm, 板厚為10.6 mm,在100g重力場中,相當(dāng)于施加30 kPa的豎向壓力。圖1(d)為試驗4所用D12d4h2-30kPa模型,該模型的沉箱部分埋深為20 mm。圖1(e)為試驗5所用D8d4h4-30kPa模型,該模型的板部分直徑為80 mm。試驗時通過設(shè)置在邊緣的錨眼施加水平荷載。 03 試驗砂 試驗采用粒徑小于1 mm的鈣質(zhì)砂,其顆分曲線及主要物理特性見圖2(a)。其比重為2.81,平均粒徑D50為0.3 mm,最大、最小孔隙比分別為1.15和0.86。采用砂雨法制備砂土地層,落砂高度為280 mm。為確保地層均勻,分10層制備地層。底部9層厚40 mm,頂部厚20 mm。經(jīng)反算后可知各層砂的相對密度在68%~72%之間,如圖2(b)所示。 值得注意的是,海上錨的現(xiàn)場條件通常涉及完全飽和的地層,吸力沉箱的承載力與砂質(zhì)海床的排水條件有關(guān)。在本研究中,采用干砂來模擬排水條件。對于飽和砂中的吸 力錨,由于沉箱內(nèi)部吸力的發(fā)揮,不排水條件下的上拔承載力要高得多(Vicent 等,2020)。關(guān)于水平力,排水條件可能影響破壞機制,從而影響錨的承載力。然而,水平和垂直荷載的耦合效應(yīng)可能需要進一步評估。對于本文采用的CGA,在不排水條件下,沉箱內(nèi)部也可能出現(xiàn)吸力。因此,離心模型試驗中的排水條件可能對錨的承載力給出了保守的評估。 圖2 砂特性:(a)顆分曲線及主要物理特性;(b)砂相對密度沿埋深分布情況 04 離心模型布置 圖3(a)展示了離心模型布置的正視圖,土樣高380 mm,長1200 mm (分別相當(dāng)于原型比例的38 m和120 m)。三個模型錨安裝在靠近有機玻璃板的位置。作用在錨上的荷載通過直徑為1.2 mm、最大張力為1.2 kN的鋼絲繩傳遞。該繩索通過兩個滑輪連接到稱重傳感器。稱重傳感器固定在上板上,通過電機控制上板以0.1 mm/s的速度運動。如圖3(b)的所示,土體寬為300 mm (相當(dāng)于原型比例的30 m)。相鄰錨之間的距離大于5.75d,錨與壁之間的距離大于4.75d,這可以避免邊界條件的可能影響。在制備砂之前,在板表面涂抹硅油從而減少砂與有機玻璃板之間的摩擦。設(shè)置三臺相機,間隔6秒,用于捕捉錨的運動。 圖3 離心模型試驗布局:(a)正視圖;(b)俯視圖 05 試驗數(shù)據(jù)處理 通過錨眼運動和錨的旋轉(zhuǎn)角度兩個變量描述錨的運動。試驗中錨眼的水平位移近似于總位移。由相機記錄的兩個點來計算錨的旋轉(zhuǎn),取順時針旋轉(zhuǎn)為正。 數(shù)值分析 本研究首先通過有限元分析估計砂與有機玻璃板間界面摩擦的影響,再通過離心模型試驗驗證數(shù)值模型并揭示CGA的承載機制。 01 本構(gòu)模型和參數(shù)選取 研究采用砂土亞塑性本構(gòu)來模擬砂土的行為,該模型可以考慮應(yīng)力/應(yīng)變歷史。該模型有8個參數(shù),均通過單元試驗進行校準(zhǔn),并匯總于表1。 表1 研究所用鈣質(zhì)砂亞塑性本構(gòu)模型參數(shù)標(biāo)定結(jié)果匯總 02 有限元模型 模擬使用的商業(yè)有限元程序ABAQUS 2020。采用用戶自定義砂土亞塑性本構(gòu)模型。圖4為模擬所復(fù)現(xiàn)的試驗2-D12d4h4模型試驗的有限元網(wǎng)格。與離心模型試驗一致,采用半模型進行設(shè)置,通過有機玻璃板限制一側(cè)位移。土體底部邊界固定,而側(cè)向邊界限制水平位移,允許地層沉降。界面行為通過摩擦模擬,法向行為為硬接觸,并允許界面分離,切向接觸采用罰函數(shù)。通過砂與鋁合金之間的界面剪切試驗,確定界面摩擦角為26.1°。經(jīng)過不同單元類型和單元尺寸的敏感性研究后,砂、錨和有機玻璃板使用C3D8單元進行全積分建模。通過將單元尺寸減小到原始尺寸的一半和四分之一進行了網(wǎng)格敏感性分析。結(jié)果表明,這些模擬結(jié)果之間的差異小于2.5%。 03 有機玻璃摩擦作用評估 通過界面剪切試驗測得法向應(yīng)力為50 kPa、100 kPa及200 kPa時,鈣質(zhì)砂與有機玻璃間的摩擦系數(shù)。在有限元中取其中最大值μ1=0.091。同時,測量了鋁合金與有機玻璃板間的摩擦系數(shù),在模擬中采用μ1=0.065。圖4(b)展示了試驗3-D12d4h4-30 kPa在無摩擦和有摩擦作用時的荷載位移曲線??梢钥吹接心Σ?xí)r極限承載力比無摩擦?xí)r大3.9%。其他案例的差異更小,匯總于表2。為減少界面摩擦對試驗結(jié)果的影響,離心試驗中測量的力通過最大差異進行了修正。 圖4 試驗3-D12d4h4-30 kPa,(a)有限元模型正視圖;(b)荷載位移曲線 表2 有機玻璃界面有無摩擦?xí)r極限承載力差異匯總 結(jié)果分析 01 土體位移 研究基于原型尺寸解釋試驗及數(shù)值結(jié)果。圖5-9中的實線和虛線分別表示試驗和數(shù)值結(jié)果。黑色和紅色線分別代表荷載-位移和荷載-旋轉(zhuǎn)曲線。左Y軸代表荷載F,右Y軸是通過錨的重量F/W歸一化的力(其中W是錨在空氣中的重量)。還展示了特定狀態(tài)(如代表極限狀態(tài)的B)下的土體位移場及其他主要信息。 試驗1–d4h4的實測荷載-位移響應(yīng)如圖5所示,包含兩個階段。在第一階段(位移s<0.26?m),荷載隨加載位移逐漸增加,錨發(fā)生向前旋轉(zhuǎn)。錨前方的土體水平移動并形成楔形區(qū),而前裙板后方的土體向下移動。狀態(tài)B展示了其極限狀態(tài)(s=0.26?m,旋轉(zhuǎn)角ω=2.4°)下的土體位移,此時土體發(fā)揮區(qū)域達到最大。筒內(nèi)形成一個可能的旋轉(zhuǎn)中心(RC)。由于旋轉(zhuǎn),錨前方的土體同時向前和向下移動,而筒后裙前方的土體形成楔形區(qū)域。在第二階段,錨經(jīng)歷荷載快速下降和持續(xù)向前旋轉(zhuǎn)。狀態(tài)C展示了在s=0.67?m (0.168d)和ω=14.7 時的典型土體位移場。錨受到豎向上拔分力,即將被拔出。錨的運動模式從旋轉(zhuǎn)轉(zhuǎn)變?yōu)榘纬?,土體動員區(qū)域相應(yīng)減小,這是錨承載力下降的主要原因。 與離心結(jié)果相比,有限元模擬結(jié)果對錨在極限狀態(tài)下的承載力和位移提供了相對準(zhǔn)確的預(yù)測。主要不足是有限元模型由于其小變形假設(shè),無法模擬拔出的全過程。 圖5 試驗1-d4h4試驗結(jié)果與數(shù)值模擬結(jié)果對比 與試驗1相比,增設(shè)頂板后錨的承載力幾乎翻倍,見圖6。在達到極限狀態(tài)(s≤0.34m)之前,荷載隨著位移增加。錨圍繞沉箱內(nèi)的可能旋轉(zhuǎn)中心旋轉(zhuǎn)(圖6中的狀態(tài)A)。由于添加了板,與試驗 1 相比,沉箱前方的砂土形成了更大的發(fā)揮區(qū)域。在極限狀態(tài)(圖6中的狀態(tài)B),土體位移區(qū)域擴展到最大范圍。沉箱內(nèi)的土楔從沉箱底部延伸到筒頂。沉箱底部和前方的土體向上移動,而上部土體向前和向上移動。與試驗1相比,板約束了沉箱前方土體的向上移動,導(dǎo)致土體發(fā)揮區(qū)域的擴展。極限狀態(tài)后,錨繼續(xù)正向旋轉(zhuǎn)并具有上拔分量,導(dǎo)致沉箱前方的土體發(fā)揮區(qū)域減小。狀態(tài)C呈現(xiàn)錨被拔出并具有明顯正向旋轉(zhuǎn)的典型狀態(tài)。有限元分析預(yù)測的錨承載力基本與測量結(jié)果匹配,盡管它高估了極限狀態(tài)下的旋轉(zhuǎn)角度。 圖6 試驗2-D12d4h4試驗結(jié)果與數(shù)值模擬結(jié)果對比 如圖7所示,試驗3-D12d4h4-30kPa在施加30 kPa的附加壓力后,承載力顯著提高(超過2倍)。此外,達到極限狀態(tài)所需的位移也翻倍。與試驗2不同,錨在初始階段幾乎以平移狀態(tài)運動,旋轉(zhuǎn)角極小(ω≤0.42°),直至s=0.36m。在圖7的狀態(tài)A中,前裙板附近的土體水平移動,由于豎向壓力的約束作用,沉箱前方土體呈現(xiàn)向下運動趨勢。隨后,隨著荷載增大,錨開始伴隨水平移動產(chǎn)生旋轉(zhuǎn)。在極限狀態(tài)(圖7中狀態(tài)B),錨表現(xiàn)出明顯的正向旋轉(zhuǎn)(ω=5.15°),沉箱前方出現(xiàn)比試驗2大得多的土體發(fā)揮區(qū)域。這種顯著的承載力提升歸因于土體發(fā)揮區(qū)域擴展至板邊緣外約1.5d處。此后,土體發(fā)揮區(qū)域急劇減小(如狀態(tài)C所示)。數(shù)值預(yù)測結(jié)果略高于離心試驗結(jié)果,但計算得到的F-ω曲線與實測錨旋轉(zhuǎn)角度吻合較好 圖7 試驗3-D12d4h4-30kPa試驗結(jié)果與數(shù)值模擬結(jié)果對比 如圖8所示,相較于試驗3,當(dāng)沉箱深度減小至2 m時,試驗4-D12d4h2-30kPa,CGA主要表現(xiàn)為平移,旋轉(zhuǎn)幅度極小,承載力降低約50%。狀態(tài)A時,沉箱內(nèi)部及前方土體向前移動,隨后錨出現(xiàn)微小的向后旋轉(zhuǎn)。在極限狀態(tài)(圖8中狀態(tài)B),沉箱前方0.5d半徑內(nèi)的土體水平移動,形成楔形區(qū)域。此狀態(tài)之后,錨承載力下降約26%,隨后基本保持不變,這與試驗3不同。這種穩(wěn)定的承載力可能歸因于平移運動抑制了錨的向上移動和拔出。與狀態(tài)B相比,狀態(tài)C時板前方的土體發(fā)揮區(qū)域有所減小,這是承載力降低的主要原因。有限元模擬有效捕捉到錨的向后旋轉(zhuǎn),并對離心試驗中的錨承載力做出了精確預(yù)測。 圖8 試驗D12d4h2-30kPa試驗結(jié)果與數(shù)值模擬結(jié)果對比 如圖9所示,相較于試驗3,由于平板直徑減小至8 m,試驗5-D8d4h2-30kPa中CGA承載力降低。荷載最初隨位移增加而增大,錨緩慢正向旋轉(zhuǎn)。在狀態(tài)A,沉箱內(nèi)部上層土體隨錨移動,而底部土體基本保持靜止。由于板直徑較小,沉箱前方形成的楔形區(qū)域水平尺寸比試驗3小,但與試驗1(無頂板模型)相比,仍具有更大的土體發(fā)揮區(qū)域。在極限狀態(tài)(圖9中狀態(tài)B),錨底部附近形成一個可能的旋轉(zhuǎn)中心。與試驗3相比,沉箱前方土體形成的發(fā)揮區(qū)域水平尺寸更大。隨后,沉箱頂部土體幾乎水平移動(見圖9中狀態(tài)C),板前方土體位移區(qū)域急劇減小,這是承載力降低的原因。 圖9 試驗D8d4h4-30kPa試驗結(jié)果與數(shù)值模擬結(jié)果對比 02 極限狀態(tài)下的承載力 離心試驗中實測的荷載-位移曲線如圖10(a)所示,并匯總于表3。試驗1在s=0.065d時的承載力為1584 kN。添加頂板后,試驗2中錨承載力提高了94%,土體阻力完全發(fā)揮所需的位移也增加至0.085D。此外,施加30 kPa垂直壓力后,試驗3中錨承載力相比無頂板的試驗1提高了597%,達到極限狀態(tài)所需的位移也增加至s=0.18d。將試驗3中的沉箱埋深減半(即試驗4)導(dǎo)致錨承載力降低43%,突顯了沉箱深度對承載力的顯著影響。然而,試驗4中錨的承載力仍達到試驗1的243%,表明通過添加板可以抵消因沉箱深度減小帶來的承載力損失。采用直徑8 m的板和30 kPa垂直壓力,試驗5中錨的承載力相比試驗1提高了203%。 所有試驗的荷載-旋轉(zhuǎn)角度曲線如圖10(b)所示。在試驗1和試驗2中,極限狀態(tài)下的錨正向旋轉(zhuǎn)角度接近(ω=2.40°和ω=2.44°)。試驗3需要更大的旋轉(zhuǎn)角度才能達到極限狀態(tài)(ω=5.15°),因為板的添加限制了沉箱旋轉(zhuǎn),從而擴大了土體的發(fā)揮區(qū)域。相比之下,試驗4僅向后旋轉(zhuǎn)0.66°,表明其主要為平移運動。 試驗4中錨具有穩(wěn)定的殘余承載力,保持其峰值的74%,而其他試驗在峰值后呈現(xiàn)持續(xù)下降趨勢。從工程角度來看,延性破壞被認(rèn)為更可靠,應(yīng)避免脆性破壞。對于重力錨,承載力由界面摩擦發(fā)揮,即使在大位移下數(shù)值也基本保持不變,這種錨破壞屬于延性破壞,在現(xiàn)實中非??煽?。相比之下,嵌入式錨(如吸力錨、拖曳嵌入式錨和魚雷錨)在被拔出時承載力顯著降低,因此這些錨類型的可靠性低于重力錨。本研究表明,沉箱在極限狀態(tài)后承載力急劇下降,表現(xiàn)為脆性破壞。然而,CGA在極限狀態(tài)后表現(xiàn)出優(yōu)異的承載力保持能力,即使在較大位移下仍能保留大部分承載力。特別是試驗4在2 m位移內(nèi)具有幾乎恒定的殘余承載力,因此CGA被認(rèn)為經(jīng)歷延性破壞,在工程實踐中更可靠。 圖10 離心模型試驗結(jié)果:(a)荷載-位移曲線;(b)荷載-旋轉(zhuǎn)角度曲線 表3 模型試驗中極限狀態(tài)下錨承載特性匯總 03 極限狀態(tài)下的土體位移 錨的承載力取決于土體位移和破壞模式。極限狀態(tài)下的土體位移場如圖5-9中狀態(tài)B所示。試驗1中錨以旋轉(zhuǎn)為主,沉箱內(nèi)出現(xiàn)旋轉(zhuǎn)中心(圖5)。對于試驗2(圖6),通過添加板,沉箱前方發(fā)揮的土體體積更大。在圖7中,試驗3的土體應(yīng)力狀態(tài)因垂直壓力進一步增強,進一步擴大了位移區(qū)域并提高了錨承載力。試驗4(圖8)顯示板下土體以平移運動為主。試驗5在極限狀態(tài)下出現(xiàn)旋轉(zhuǎn)中心,但與試驗1相比,旋轉(zhuǎn)中心位置更低,表明較小的板直徑對CGA旋轉(zhuǎn)有輕微抑制作用(圖9)。 討論 01 承載力發(fā)揮機制 通過有限元模擬的三維土體位移和應(yīng)力狀態(tài)結(jié)果,進一步分析了CGA的破壞機制。圖11展示了極限狀態(tài)下三維空間中的土體位移。與試驗1相比,添加板后沉箱前方土體發(fā)揮區(qū)域的尺寸擴大(圖11(b)),錨旋轉(zhuǎn)受到一定程度的抑制。施加30 kPa的豎向壓力(圖11(c))使土體發(fā)揮區(qū)域在寬度和深度上擴展,進一步限制錨旋轉(zhuǎn)并促使土體向更水平的方向移動。當(dāng)沉箱埋深減小至2 m時(如圖11(d)所示),土體發(fā)揮區(qū)域的深度和寬度減小,強調(diào)了土體的水平分量。與試驗3相比,減小板直徑(圖11(e))也會導(dǎo)致土體發(fā)揮區(qū)域變小。圖12展示了有限元結(jié)果中極限狀態(tài)下的土體壓力(三個主應(yīng)力的平均值)。對于標(biāo)準(zhǔn)沉箱模型(即試驗1,如圖12(a)所示),土壓力集中在沉箱前方朝向拉動方向,在筒中部埋深處達到峰值。然而,一旦施加頂板(圖12(b)),受壓區(qū)域向土表面附近擴展,并向更大的橫向范圍延伸。增加板壓力(圖12(c))會增加這些觀測到的壓力的大小,并將最大應(yīng)力區(qū)域向下推移。相應(yīng)地,沉箱深度減小(圖12(d))主要減弱了土體應(yīng)力狀態(tài)的大小,并縮小了受壓區(qū)域的范圍。與試驗3相比,由于板直徑減小,圖12(e)中的應(yīng)力增強區(qū)域更?。ㄓ绕涫窃陂L度和寬度上)。 這些分析結(jié)果表明,增設(shè)板和施加豎向壓力會改變土體位移和應(yīng)力分布模式。這使得CGA在極限狀態(tài)下主要表現(xiàn)為平移運動,與試驗1中觀察到沉箱的明顯正向旋轉(zhuǎn)形成對比。與常規(guī)沉箱相比,主要有兩個方面原因?qū)е翪GA的承載力增強。首先,沉箱、板和豎向壓力的共同作用增加了土體發(fā)揮區(qū)域。其次,由于板和垂直壓力的約束效應(yīng),沉箱前方和板下方的土體應(yīng)力狀態(tài)得到增強。這兩種效應(yīng)的耦合使得CGA的錨承載力相比沉箱顯著提高。 圖11 有限元計算結(jié)果中的土體三維位移分布:(a) d4h4工況;(b) D12d4h4工況;(c) D12d4h4-30 kPa工況;(d) D12d4h4-30 kPa工況;(e) D8d4h4-30 kPa工況 圖12 有限元計算中的土體壓應(yīng)力分布:(a) d4h4工況;(b) D12d4h4工況;(c) D12d4h4-30 kPa工況;(d) D12d4h2-30 kPa工況;(e) D8d4h4-30 kPa工況 02 CGA實際安裝問題 沉箱-板組合重力錨主要適用于松散砂、中密砂、粉土和黏土。由于土壤阻力較高,在非常密實的砂土中可能難以安裝。特別是,該錨非常適合下層土為巖石的土層。沉箱尺寸主要由錨的重量和地層抗力決定,需要進行適當(dāng)評估。根據(jù)數(shù)值計算,沉箱最大長度應(yīng)小于8 m(h/d<2),否則在砂土中安裝錨將非常困難。此外,安裝過程中應(yīng)設(shè)置多個排水閥并保持打開狀態(tài),以便在安裝過程中筒內(nèi)的水能夠流出。安裝完成后,應(yīng)將這些閥密封,使沉箱內(nèi)部形成封閉狀態(tài)。排水閥的數(shù)量應(yīng)根據(jù)安裝持續(xù)時間進行調(diào)整,確保有足夠的時間讓筒內(nèi)的水完全排出。 此外,錨安裝時需要相對溫和的海況,以減少可能的波浪和水流荷載引起的橫向荷載。應(yīng)進行必要的現(xiàn)場調(diào)查、海洋氣象和地球物理勘測,以選擇相對平坦的海床表面,確保板與土壤完全接觸,否則應(yīng)采取必要措施平整海床表面。如果底部水流速度較大,板邊緣附近可能會發(fā)生一些沖刷。然而,這種沖刷的影響可能不會顯著影響錨的承載力,因為沖刷孔遠離沉箱。 結(jié)論 研究提出了一種新型沉箱-板組合重力錨。通過開展離心模型試驗及數(shù)值模擬,探究了該錨的承載性能及其承載機制。研究發(fā)現(xiàn)在沉箱上部增設(shè)板可顯著提高其承載力,此外施加額外的豎向壓力可進一步提高沉箱的承載力。增設(shè)板和施加豎向壓力后,錨的破壞形式從正向旋轉(zhuǎn)轉(zhuǎn)變?yōu)樗揭苿?,同時從脆性破壞向延性破壞轉(zhuǎn)變。土體發(fā)揮區(qū)域的增加及板對土體的約束效應(yīng)是新型沉箱-板組合重力錨承載力提高的主要原因。
Hot News
成功提示
錯誤提示
警告提示
評論 (0)